2010 Workshop on Nonlinear Analysis and Optimization Schedule of Programs Place : M210, Mathematics Building Stationary Point Conditions for the Fb Merit Function Associated with Symmetric Cones Convergence Rate Analysis on Interval-type Algorithms for Generalized Fractional Programming
نویسندگان
چکیده
For the symmetric cone complementarity problem, we show that each stationary point of the unconstrained minimization reformulation based on the FischerBurmeister merit function is a solution to the problem, provided that the gradient operators of the mappings involved in the problem satisfy column monotonicity or have the Cartesian P0-property. These results answer the open question proposed in the article appeared in Journal of Mathematical Analysis and Applications, vol. 355, pp. 195–215, 2009.
منابع مشابه
Solving Fractional Programming Problems based on Swarm Intelligence
This paper presents a new approach to solve Fractional Programming Problems (FPPs) based on two different Swarm Intelligence (SI) algorithms. The two algorithms are: Particle Swarm Optimization, and Firefly Algorithm. The two algorithms are tested using several FPP benchmark examples and two selected industrial applications. The test aims to prove the capability of the SI algorithms to s...
متن کاملAn existence result for n^{th}-order nonlinear fractional differential equations
In this paper, we investigate the existence of solutions of some three-point boundary value problems for n-th order nonlinear fractional differential equations with higher boundary conditions by using a fixed point theorem on cones.
متن کاملA necessary condition for multiple objective fractional programming
In this paper, we establish a proof for a necessary condition for multiple objective fractional programming. In order to derive the set of necessary conditions, we employ an equivalent parametric problem. Also, we present the related semi parametric model.
متن کاملA full NT-step O(n) infeasible interior-point method for Cartesian P_*(k) –HLCP over symmetric cones using exponential convexity
In this paper, by using the exponential convexity property of a barrier function, we propose an infeasible interior-point method for Cartesian P_*(k) horizontal linear complementarity problem over symmetric cones. The method uses Nesterov and Todd full steps, and we prove that the proposed algorithm is well define. The iteration bound coincides with the currently best iteration bound for the Ca...
متن کاملStationary point conditions for the FB merit function associated with symmetric cones
For the symmetric cone complementarity problem, we show that each stationary point of the unconstrained minimization reformulation based on the FischerBurmeister merit function is a solution to the problem, provided that the gradient operators of the mappings involved in the problem satisfy column monotonicity or have the Cartesian P0-property. These results answer the open question proposed in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010